Royden compactification of integers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Set of Idempotents in the Weakly Almost Periodic Compactification of the Integers Is Not Closed

This paper answers negatively the question of whether the sets of idempotents in the weakly almost periodic compactifications of (N, +) and (Z, +) are closed.

متن کامل

A Note on the Royden Boundary

Recently Loeb and Walsh [3] established several results concerning the Royden boundary in the axiomatic setting. This in effect generalizes theorems about H D-f unctions, Dirichlet-finite harmonic functions on surfaces to Riemannian manifolds, which are the most general carriers of these functions. Their results are however restricted to bounded H D-f unctions. Whether Nakai's [4] characterizat...

متن کامل

On the Kobayashi-Royden metric for ellipsoids

The Kobayashi indicatrix (infinitesimal unit ball) of a domain in IE n is known to be a biholomorphic invariant. In particular, if a domain is biholomorphic to a ball, then the indicatrix is the ball. Until the recent deep results of Lempert [4], it was not known to what extent the indicatrix characterizes the domain. Sibony had shown earlier that the indicatrix of any pseudoconvex circular dom...

متن کامل

Flux Compactification

We review recent work in which compactifications of string and M theory are constructed in which all scalar fields (moduli) are massive, and supersymmetry is broken with a small positive cosmological constant, features needed to reproduce real world physics. We explain how this work implies that there is a “landscape” of string/M theory vacua, perhaps containing many candidates for describing r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 1996

ISSN: 0018-2079

DOI: 10.32917/hmj/1206127256